6. (a) Using the fact that time = distance/velocity while the velocity is constant, we find

$$v_{\text{avg}} = \frac{73.2 \text{ m} + 73.2 \text{ m}}{\frac{73.2 \text{ m}}{1.22 \text{ m/s}} + \frac{73.2 \text{ m}}{3.05 \text{ m}}} = 1.74 \text{ m/s}.$$

(b) Using the fact that distance = vt while the velocity v is constant, we find

$$v_{\text{avg}} = \frac{(1.22 \text{ m/s})(60 \text{ s}) + (3.05 \text{ m/s})(60 \text{ s})}{120 \text{ s}} = 2.14 \text{ m/s}.$$

(c) The graphs are shown below (with meters and seconds understood). The first consists of two (solid) line segments, the first having a slope of 1.22 and the second having a slope of 3.05. The slope of the dashed line represents the average velocity (in both graphs). The second graph also consists of two (solid) line segments, having the same slopes as before — the main difference (compared to the first graph) being that the stage involving higher-speed motion lasts much longer.

